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ABSTRACT 
 
RTK GPS has become a global utility in engineering survey activities. RTK GPS offers an 
efficient means of providing near instantaneous positions by employing differential GPS 
positioning whereby users can obtain sub-centimetre/millimetre level position in real time.  In 
RTK GPS all algorithms using code information only are limited to range accuracy of about 
0.5-1.0 metres due to code noise. However, range measurement using carrier phase 
information on the other hand is limited to only 0.5-3.0 millimetres by noise. Thus the use of 
carrier phase measurements in high precision positioning has become indispensable. Yet in 
order to use the carrier phase measurements in an urban canyon environment, the user has a 
couple of positioning errors to deal with. 
 
Using double differencing procedure, this research work uses an exponentially weighted 
Extended Kalman Filter (EWEKF) with the integration of detection, identification, adaptation 
(DIA) method as an attempt to remove/isolate the effects of errors such as the multipath, 
outliers and receiver noise on GPS signals during transmission. The end result shows an 
improved coordinates solution. 
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1.  INTRODUCTION  
 
Researchers have focused on defining the different positioning error sources, studying their 
effects, and searching for methods to decrease, or possibly eliminate these errors in order to 
achieve better positioning accuracies in RTK set up in an urban canyon environment 
 
One of the major problems is the Multipath error, which occurs when GPS signals are 
reflected from nearby objects before reaching the antenna. Also, electrical interference occurs 
when secondary sources or other transmitters and receivers distort the reception of the GPS 
signals or affect the receiver’s circuitry. These are particularly problematic for RTK GPS in 
an urban canyon environment, because they act as bias during the short location occupations 
and can prevent satellite tracking. 
 
Besides the afore-mentioned error sources with the use of carrier phase observables, other 
problems that are associated with RTK GPS positioning is the baseline length which tends to 
degrade the accuracy as the baseline length increases. This is predominantly due to  
 
atmospheric effects (ionosphere and troposphere), which become de-correlated and thus no 
longer cancel over longer distances through differencing algorithms.  

2.  GPS MEASUREMENT MODELS 
 
The observables considered in this paper consist of double differenced between two 
receivers.  For two receiver stations (1 and 2) tracking simultaneously the same set of 
satellites (s and l), we have the code double difference equation for dual frequencies as  
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Subscripts p, q are used to identify measurements with L1, L2 with frequency 1f  and 2f  
respectively. 
 

slT12  is for the tropospheric delay, slI12  is for the ionospheric delay, slM12  is for the multipath 
delay and sle12  denotes an error for code observations. Similarly, for the combined phase 
measurements we have 
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where slN12 denotes ambiguities between satellites s and l and receivers 1 and 2, while pλ , qλ  

are the wavelengths of L1, L2 carrier respectively, sl
12ε  is the error in the carrier phase 

measurements. One should note here that the above model is equally valid for the future GPS 
L5 frequency as well. 
 
The double difference code and carrier phase measurements can now be reduced to the form 
given in equation (5)  
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where ...2833333.1120/154/ 21 ==ff . 

3.  MULTIPATH 
 
Multipath signal propagation has remained a dominant cause of error in RTK GPS 
positioning. Multipath errors are due to reflected GPS signals from surfaces (such as 
buildings, metal surfaces etc) near the receiver, resulting in one or more secondary 
propagation paths. These secondary-paths signals, which are superimposed on the desired 
direct path signal, always have a longer propagation time and can significantly distort the 
amplitude and phase of the direct-path signal (Iyiade and Owusu-Nkasah, 2002, Cross et al, 
2003).  
 
Multipath error is scaled according to wavelength and is generally therefore nearly 100 times 
lager for P-code pseudoranges than it is for carrier phase measurements. Instantaneous 
multipath error can be as large as a few meters for P-code and a few centimetres for carrier 
phase. Thus, multipath becomes a dominant source of error in the measurement, in a situation 
in which range and phase data are needed instantaneously. 

4.  EXPONENTIALLY WEIGHTED EXTENDED KALMAN FILTERING (EWEFK) 
 
The filter describes the evolution of the states, the measurement model relates the state vector 
to the GPS observations through the design matrix H. Regular updates by the measurement 
into the state vector is crucial as the system will diverge if there is no measurement provided 
over a long period of time, driven by the system input noise. The observations for the float 
filter are double difference carrier phase and code observables.  
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The EKF uses an over weighting of the most recent data.  Here, a scalar parameter τ is 
introduced such that 0 < τ < 1.  Since τ < 1, where a value of 1 corresponds to a standard EKF 
and a value of zero corresponds to keeping only the first measured point. The factor τi-j 
weights past data less heavily than more recent data.  This feature enables an adaptive 
algorithm to respond to variations in data statistics by forgetting data from the remote past.  
Since data acquisition and processing was done in real time and due to the computation 
problem in an EKF, an exponentially weighted EKF method was implemented. 
 
The process and measurement models and implementation equations for the exponentially 
weighted EKF are: 
 
For process model: 
 
                           11)1,ˆ( −− +−= kkk wxkxFx                                                 (6) 
                  ( )QNwk ,0~                
 
For measurement model 
 
                              kkk vxkxHz += ),ˆ(                                                               (7) 
                               ( )RNvk ,0~  
 
By setting the model covariance matrices equal to 
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1

exp= , and 1>α , and constant matrices Q and R, for  
 
The symbol kw and kv  denotes variance of the process noise and are zero-mean normal 
distributed white noise and characterized by covariance matrices Q and R  respectively. The 
essential implementations for the extended Kalman filter are given in many literatures such as 
Strang and Borre (1997). 
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In the dynamics model of the filter, three states which will be nine variables that are three 
linear degrees of freedom (position vector), the correspondence velocity variables (velocity 
vector) and correspondence acceleration variables (acceleration vector) are considered. In this 
application, the state model can be written as 
               
 
                              [ ]T

kzzyyxxk avzavyavxX ,,,,,,,,=                                   (13) 
 
This model can be represented by the equation 
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The relation between the previous states and the current states are govern by the transition 
matrix )( kF , 
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where t∆ is the time step between 1−kt and kt (transition time interval in seconds), and the 
process noise vector kw is considered to be zero mean white. 
 

[ ]TKkk RRRRxH 4321 ,,,)( =                                           (16) 
 

4321 ,,, RRRR , are the measurement consists of pseudorange and phase observation and hence the 
relation between the measurements and the states (position vector) is not linear.  Equation (16) 
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can be linearised by approximating )( kk xH  with Taylor series expansion about the predicted 
value of the states −

kx̂  at tkt ∆=  and retaining only the first-order terms (equation 18). The 
linearised measurement equation in the extended Kalman filter is defined as  
 

kk Hxz =                                                                    (17) 
 
where H is the Jacobian matrix given as follows 
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The measurement vector z is expressed as 
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5.  QUALITY CONTROL 
 
In handling various alternative hypothesis, the Detection, Identification and Adaptation (DIA) 
method as described by (Teunissen, 1998) was implemented in the software used in 
processing the observed data. The DIA-procedure consists of the followings steps (de Jong, 
1998): 
− Detection: In the detection step, a global overall model test is performed on the whole 

observation set at a given epoch in other to check weather unspecified model errors have 
occurred.  

− Identification: After detecting of model errors, identification of the potential source of 
these errors is required. After identification, the detected bias is compared with the 
Minimal Detectable Biases (MDB) value that is a threshold value used to identify biases. 
If the bias candidate’s value is less than the MDB value, the observation is accepted. 
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− Adaptation: After identification of the alternative hypothesis, adaptation of the recursive 
filter is needed to eliminate the presence of biases in the state estimation.  

 
How well observations are controlled is a function of the redundancy in the observations. 
Redundancy numbers could be defined as elements of the principal diagonal of 
matrix )( 1

ˆ
−

lr PP . The redundancy of the ith observation can be expressed as 
 

( )iilri PPRd 1
ˆ

−=                                                               (21) 
where the subscripts ii  indicates the ith diagonal element of the matrix and rPˆ  is the 
covariance of the residual.  The trace of Rd is the observation redundancy )(υ , since Rd is 
idempotent (unchanged in value following multiplication by itself) and the trace of an 
idempotent matrix equals its rank (Leick, 1995). Each diagonal element of Rd corresponds to 
that observation’s contribution to the overall redundancy. Assuming that the observation is 
uncorrelated (that is the observation covariance matrix is diagonal), the diagonal 
elements )( iν is  
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The MDB is the smallest error on a particular observation which the model or system will be 
able to detect. The MDB for the ith observation can be expressed as (Lachapelle and Ryan, 
2000) 
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where

il
σ  is the standard deviation of the ith observation and i∇  is the magnitude of the N 

by 1 vector i∇ . 
    

6.  EXPERIMENTS 
 
Due to correlation in the results generated during data processing, only the results generated 
on two consecutive days are presented here. Multipath delay was constantly the main error, 
due to the location of the antenna position.  Figure 1 shows the pseudorange multipath error 
on two consecutive days 
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Figure 1: Shows the pseudorange multipath error on L1 for all the tracked satellites on day 1 on the 
left while that of day 2 is on the right, there was loss of lock in some of the satellites during the 
observation period. 

 
The filtered time series antenna coordinates of the monitoring point is shown in Figure 2.  
During data processing some observations were rejected as a result of possible outliers.   
 
The amount of data used is a trade-off between computational speed and observability of the 
system dynamics. More so, since no process noise was assumed in the estimation, a shorter 
block of data is advantageous. It was also observed that using very large data did not greatly 
reduced the number of iterations to convergence, but did greatly increase the computation 
time per iteration. 
 
After the filter had been properly tuned, it was found to converge readily coarse initial 
conditions. Tuning, involved prescribing a fictitious amount of integer state process noise 
covariance (matrix) to prevent the filter gains associated with the integer states from going to 
zero. 
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Figure 2. Depicts the computed X, Y, Z coordinates with the x, y and z coordinates sigma as 
0.004metres, 0.003metres and 0.005metres respectively. 
  

 
Figure 3 depicts the baseline estimation using an exponentially weighting of data in an Extended 
Kalman Filter. Here, more importance is given to the most recent measurement. 
 
Further more, in other to study landslide deformation. Displacements are obtained by 
differencing the coordinates of observed GPS data from two consecutive observations. The 
obtained time series coordinate differences are shown in Figure 4. 
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Figure 4: Depicts the coordinate differences between two consecutive observations. 

7.  CONCLUSION 
 
The use of GPS technology is a very useful tool in continuous monitoring of a structural 
deformation of a building in other to determine its behaviour.  However, there are some 
limiting factors in attaining better accuracy in GPS observations among them is the multipath. 
The use of Kalman filtering reduced the noise in other to achieve a better positioning 
accuracy. Finally, statistical testing can be efficient if the stochastic models are correctly 
known or well estimated. Numerical results indicate that GPS techniques are very reliable for 
structural deformation monitoring and other environmental related monitoring. There are 
rooms for improvement in this paper and further research work is still going on.  
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