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SUMMARY 
 
The collocation and filtering method of geodesist H. Moritz not only estimates parameters but 
also separates signal from noise and provides prediction following the Wiener-Kolmogorov 
theory and treating the signal as a stochastic quantity. The statistic approach of nonparametric 
or semiparametric regression simplifies the theory of the method. The signal is treated as a 
deterministic quantity, and the Wiener-Kolmogorov prediction can be replaced by simple in-
terpolation. In addition, several methods to determine the signal to noise ratio such as cross 
validation were developed. By applying these methods to the transformation of old coordi-
nates from 1903 to new GPS-coordinates of 1995, systematic distortions of the old coordi-
nates can be estimated besides the estimation of Helmert-transformation parameters. Map-
ping the derivative of the systematic distortions enabled the Swiss Canton of Basel-Stadt to 
choose appropriate triangles in order to define a triangulation for coordinate transformation 
which fulfilled precision requirements in each triangle separately. These statistical methods 
may also be applied to the estimation of locally different motions of sliding slopes. 
 
ZUSAMMENFASSUNG 
 
Mit der Kollokations- und Filterungsmethode des Geodäten H. Moritz werden neben der 
Schätzung von Parametern Rauschen und Signal voneinander getrennt. Mit der Wiener-
Kolmogorov-Prädiktion kann das als stochastische Grösse aufgefasste Signal an Neupunkten 
geschätzt werden. Der statistische Ansatz der semiparametrischen Regression vereinfacht die 
Theorie. Das Signal wird als deterministische Grösse behandelt, und an die Stelle der Wie-
ner-Kolmogorov-Prädiktion tritt die Interpolation der geschätzten Signalfunktion. Das Signal 
zu Rausch Verhältnis wird durch ein Regularisierungsverfahren, z.B. Kreuzvalidierung, fest-
gelegt. Mit diesem Ansatz können bei der Umrechnung der alten Landeskoordinaten von 
1903 in die neuen GPS-basierten Landeskoordinaten von 1995 die Parameter der Hel-
merttransformation und die systematischen Verzerrungen der alten gegenüber den neuen Ko-
ordinaten geschätzt werden. Die grafische Darstellung der Ableitung der systematischen Ver-
zerrungen als Fläche im Raum ermöglichte es, im Kanton Basel-Stadt (Schweiz) eine Trian-
gulation derart festzulegen, dass bei der dreiecksweisen Umrechnung zwischen den beiden 
Koordinatensystemen die vorgegebenen Genauigkeiten eingehalten werden. Mit dem semipa-
rametrischen Ansatz kann auch das lokal unterschiedliche Rutschen eines Rutschhanges dar-
gestellt werden. 
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1. INTRODUCTION 
 
In Switzerland there are two sets of national coordinates. The conventionally measured ones 
from 1903 we denote by LV03 ("Landesvermessung 1903"), and the GPS-based set of 1995 
is called LV95 ("Landesvermessung 1995"). In order to enable a further use of the LV03-
coordinates in combination with new GPS-measurements referencing to LV95 one has to 
transform the LV03-coordinates into LV95-values. Figure 1 shows the adjustments of such a 
transformation of the canton or state of Basel-Stadt. 
 

  
Figure 1. Canton of Basel-Stadt: Adjustments of LV03-coordinates of estimated Hel-
mert transformation LV03 ↔ LV95 based on 114 fiducial points. Length unit [m]. 

 
These adjustments show systematic patterns and do not vary randomly. Thus the estimation 
of a Helmert transformation between the two sets of coordinates should be accompanied by 
the estimation of the systematic distortions of the old LV03-coordinates. The new GPS-based 
LV95-coordinates are much more homogeneous than the old ones, which may contain the 
historical record of their origin, e.g. a systematic error in a baseline measurement, which is 
carried over to a whole set of following measurements. Furthermore, the Swiss Federal Offi-
ce of Topography swisstopo ordered the cantons (or states) to divide their territories into tri-
angles in such a way that coordinate transformations fulfill precision requirements in each 
triangle separately (swisstopo 2000, April 2004, May 2004). How do we determine these tri-
angles? In a triangle the systematic distortion of the LV03-coordinates should not vary too 
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much. Thus one is asking what the systematic distortions of the old coordinates are, and es-
pecially of regions with similar distortion. In this paper regions with similar distortion are de-
noted as "floes" ("Schollen" in German). One has the feeling to identify visually the central 
zones of such regions, but where should the boundaries be drawn? It is very difficult to assess 
the variation of the distortion. In addition, from a theoretical point of view the adjustments 
are known only at the fiducial points.  
 
With the methods of non- and semi-parametric regression the required estimations of Helmert 
transformations and their systematic distortions can be performed, and interpolation between 
the fiducial points is practicable. For differentiable estimations, the distortion variation is 
given by the distortion derivative. Then floes are regions with a nearly vanishing derivative 
or variation. 
 
2. SEMIPARAMETRIC REGRESSION 
 
2.1 The Model 
 
The standard Gauss-Markov model 

 
 l A x v= ⋅ −  (1) 
with 
 minTv Pv =  (2) 
 
assumes normally distributed observation adjustments v. In case we want to estimate the pa-
rameters x of a four parameter Helmert transformation ( ) ( )l t A t x= , t denotes the start sys-
tem coordinates, l the target system coordinates, and the matrix A is computed from t. The 
right side of (1) is composed of the parametric model part A x⋅  and the adjustements v. (1) is 
a parametric regression description of the data l. 
 
In the case of transforming old 1903 coordinates into GPS-based 1995 coordinates, model (1) 
is not adequate, because the old coordinates may show systematic distortions relative to the 
more homogenous GPS-based coordinates. There is no parametric model for such distortions. 
Therefore we describe the data by the model 
 
 ( ) ( ) ( )l t A t x s t n= + +  (3) 
 
with the so called signal or signal function ( )s t , and the normally distributed random com-
ponent n called noise. (2) has to be replaced by 
 
 minT Ts Rs n Pnα ⋅ + =  (4) 
 
with a positive definite matrix R (Fischer and Hegland 1999 p. 18). A model (3) is also called 
an additive model (Hastie and Tibshirani 1994 p. 86). 
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Equation (3) may be interpreted in two ways. In collocation and filtering the model part is 
given by Ax and the deviation l Ax s n− = +  from the model part is split up into the two 
components s and n, s denoting the systematic part and n denoting the random component. In 
the semiparametric regression interpretation the functional model is Ax s+ , consisting of the 
parametric component Ax and the nonparametric part s. For practical purposes the two inter-
pretations are equivalent. But there is a significant difference from the theoretical point of 
view. Treating the signal s as a stochastic quantity in collocation and filtering has the diffi-
culty that the systematic deviations described by s have to be interpreted as a realisation of a 
stochastic process (Moritz 1979 chap. 38), while in semiparametric regression s is a determi-
nistic model component like Ax. The semiparametric regression interpretation is the simpler 
one. 
 
The regularization parameter α  describes the signal to noise ratio, with a positive definite 
matrix R, called regularizer. The solution of (3) and (4) involves the following problems 
 

• How to describe the nonparametric signal ( )s t  and how to define the matrix R? 
• How to determine α ? 

 
The theory is illustrated by a one dimensional regression simulation. 
 
2.2 Description of signal s and definition of matrix R 
 
The theory see e.g. in (Ruppert, Wand and Carroll chap. 3) or in (Fischer and Hegland 1999 
p. 20). The signal 
 

 ( ) ( )1
i i

i
s t k b t t

α
= ⋅ ⋅ −∑  (5) 

 

  
Figure 2. Left below: A B-spline basis function b(t), 
right below: shifted and scaled B-Spline basis functions ki/α·b(t-ti), i= 1, …, 5, 
above: sum 1.5+∑ki/α·b(t-ti), 1.5 is added only for the clarity of the figure. 

 
is represented as a linear combination of shifted basis functions b scaled by factors ik α , as 
illustrated by figure 2 for the one dimensional case. The vector k of the coefficients ik  is 
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 ( ) ( )
11 11 ˆk P R l Axα

−− −= + ⋅ − , (6) 

 
with x̂  denoting the parameter estimates (Fischer and Hegland 1999 p. 19). 
 
In our computations we used the following types of basis functions: 
 

• B-splines of degree 1, 2, 3, 
• Gaussian curve. 

 
(5) shows that the differentiability of the basis functions ( )b t  is carried over to the signal 

function ( )s t . This fact will be addressed in 3. when using the derivative ( )s t′ . 
 
Both the regularizer matrix R and its inverse 1R−  are symmetric positive definite, and 
 
 ( )1

ij i jR b t t− = −  (7) 

 
with a basis function ( )b t , details see (Fischer and Hegland 1999 p. 20). In calculation, posi-

tive definiteness of R has to be tested. Too wide basis functions ( )b t  lead to a violation of 
that condition.  
 
The transformation at new points newt  means computing Ax s+  at newt , which involves 
evaluation of (5) at newt t= . Thus prediction in the collocation and filtering sense is reduced 
to simple interpolation. 
 

  
Figure 3. Left: A B-spline basis function of type (7). The square marks the region with values > 0.  
Right: A linear combination (8) of shifted and scaled basis functions of type (8). 

 
In case of Helmert transformations t , it  denote coordinates ( ),x y , ( ),i ix y  of the start sys-

tem, and s  the signal components ( ),s sξ η  or non Helmert part of the target system coordi-
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nates ( ),ξ η . Both target system coordinates and their signals are functions of the two start 
system coordinates. As their basis functions we use tensor products of one dimensional basis 
functions 
 
 ( ) ( )i ib x x b y y− ⋅ − , (8) 
 
and both signal components ( ),s sξ η  at ( ),x y  are given by 
 

 ( ) ( ) ( )1, i i i
i

s x y k b x x b y y
α

= ⋅ ⋅ − ⋅ −∑ , (9) 

 
as illustrated in figure 3. 
 
2.3 Determination of the Regularization Parameter α  
 
The estimations x̂ , ŝ  and n̂  depend critically on α , as is shown in figure 4 by a simulation 
of one-dimensional data. A better model estimation is shown in figure 5.  
 

  
Figure 4. Left: The estimation ˆ ˆf s+  for 0.01α =  is undersmoothed and shows too much variation. 
Right: The estimation for 5α =  is oversmoothed. 

 
In the literature, several methods for determining α  from the observations are discussed 
(Ruppert, Wand and Carroll chap. 5, Green and Silverman p. 35, Hansen and O'Leary 1993 p. 
1491-95). We only mention the 
 

• L-curve method (with curvature or distance criterion), 
• Cross validation and generalized cross validation, 
• Morozov's discrepancy method. 

 
For the L-curve method see (Hansen and O'Leary 1993 p.1492, Fischer and Hegland 1999 p. 
23). In the Method of Morozov the standard deviation σ  of the normally distributed noise n 
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is given, and α  is chosen to fulfil this requirement. This method is used when the mean sta-
tistical deviation σ  of an observation is known (Hansen and O'Leary 1993 p.1491). 
 

  
 Figure 5. Estimation ˆ ˆf s+  for 0.707GCVα = . 

 

  
Figure 6: Left: A well defined minimum of GCV(α ). Right: GCV(α ) with badly defined minimum 
marked by the arrow. Then α  has to be chosen manually in the region marked by an oval, where GCV 
reaches practically its minimum. 

 
Cross Validation and Generalized Cross Validation are methods justified by a statistical ar-
gument. α  is chosen in order to minimize the average predictive error of an additional obser-
vation (figure 6). Details of the theory see (Green and Silverman 1994 chap. 3.1 – 3.3, Hastie 
and Tibshirani 1990 chap 3.4). To simplify calculations one usually uses an approximation of 
CV called Generalized Cross Validation or GCV. 
 
3. DETECTION OF REGIONS OF SIMILAR SIGNAL 
 
3.1 Method 
 
Regions of similar signal s(t) or floes can be identified by inspecting the variation of s(t). We 
will first treat the one dimensional case. If the signal function s(t) is differentiable, the varia-
tion is given by its derivative 
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 ( ) ( )1
i i

i

ds t k b t t
dtα

′ = ⋅ ⋅ −∑ , (10) 

 
and plotting ( )s t′  or ( )s t′  as in figure 7 allows detection of the signal floes of the simulati-

on of figure 5 . A more distinguished picture can be performed when using ( )( )2s t′ . 
 

  
Figure 7. Detection of signal floes using the signal derivative of the GCV estima-
tion. The derivative shows high peaks at the boundaries of the four signal floes, 
which thus can be detected. 

 
3.2 Helmert Transformation Distortions 
 
The signal estimate of Helmert transformations is composed of the two components 

( )ˆ ˆ ,s s x yξ ξ=  and ( )ˆ ˆ ,s s x yη η= , both being functions of the start system coordinates ( ),x y . 
The derivative of the signal estimate is 
 

 ( ) ( )2 2
ˆ ˆgrad , grad ,s x y s x yξ η+ , (11) 

 
computed from the squares of the absolute values of the gradients 
 

 ( )
( )
( ) ( )

( )
( )

ˆ ˆ, ,
ˆ ˆgrad , , grad ,

ˆ ˆ, ,
x x

y y

s x y s x y
s x y s x y

s x y s x y
ξ η

ξ η
ξ η

∂ ∂
∂ ∂
∂ ∂
∂ ∂

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (12) 

 
of the two signal function components. The value of (11) may be plotted as a function of 
( ),x y , e.g. as a surface in space or by using a color representation. 
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4. APPLICATIONS AND RESULTS 
 
4.1 Triangulation of Coordinate Transformations LV03 ↔ LV95 
 
swisstopo ordered the cantons to define triangulations for coordinate transformation LV03 ↔ 
LV95 fulfilling precision requirements in each triangle separately (swisstopo 2000, April 
2004, May 2004). Signal- and noise estimations are shown in figures 8 and 9. 
 

  
Figure 8. Canton of Basel-Stadt, transformation LV03 → LV95. Left: Signal estimate, right: noise esti-
mate scaled by a factor of 10. Note that the noise varies randomly. Length unit [m]. 

 

 
Figure 9. Canton of Basel-Stadt, transformation LV03 → LV95. Signal estimate on fiducial points (red) 
and its interpolation on a grid (black). Length unit [m]. 
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Figure 9 shows a flow pattern with several floes. Their central parts are marked by regions of 
signal vectors of similar length and direction. The figure 10 plot of the signal derivative (11) 
shows the signal variation and allows the identification of the signal floes. In addition to the 
already known regions I, II and III with large signal variation or strong net deformation, the 
recently detected region IV (Liechti and Haffner 2006 p.3) could be confirmed. 
 

 
Figure 10: Signal derivative (11) of transformation LV03 → LV95. The points mark the fiducial 
points, the green line the boundary of the canton of Basel-Stadt. Roman numerals mark regions 
with large signal variation or strong net tensions. 
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Figure 11. Canton of Basel-Stadt: Triangulation for Transformation LV03 ↔ LV95 with deforma-
tion ellipses. With kind permission of Grundbuch- und Vermessungsamt Kt. BS, Switzerland 
(Liechti and Haffner 2006). 

 
The canton of Basel-Stadt based the layout of its triangles on such estimates of the signal and 
its derivative of the LV03 ↔ LV95 transformation. Performing signal estimation only on 
smaller parts of the territory allows refinement of regions with large signal variation. The tri-
angles to be used for transformation LV03 ↔ LV95 are shown in figure 11. Figure 12 shows 
the projection of a pixel map onto the signal derivative surface. Thus the geographical loca-
tions of the net distortions are immediately made visible. 
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Figure 12. Transformation LV03 → LV95 of canton of Basel-Landschaft: The surface height is 
the derivative (11) of the signal. This "landscape" has nothing to do with the topography of the re-
gion. The fiducial points are marked by blue triangles. Reproduction of the pixel map with kind 
permission of swisstopo (BA067964). 

 
4.2 Controlling Results 
 
Controlling results involves checking graphically the following criteria concerning the noise: 

• Is the choice of α  reasonable, more especially: is there a well defined minimum 
when choosing α  by GCV? 

• Are each of the estimates ˆxn , ˆyn  of the two noise components normally distributed ? 
• Are the noise azimuths equally distributed? 

• Is the quantity 
2 2

2

ˆ ˆ

ˆ
x yn n

σ

+
 ( 2σ̂  is the estimate of 2σ ) approximately 2χ − distributed 

with two degrees of freedom? 
• Do noise signs show a regionally random distribution? 
• Are the values of the normalized noise ˆ

in
iw σ=  reasonable? 

 
The signal behaviour of old coordinates has to be discussed following geodetic aspects. 

• Where do the regions with large signal variation lie? E.g. are these regions of flat 
woodland (e.g. region I of figure 10)? 

• What is the history of surveying of the considered region? 
• Are there historical hints to distortions of the old net?  
• Are there weakly defined fiducial or reconstruction points? 
• Did the instruments used produce measurements with systematic deviations? 
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5. DISCUSSION 
 
The non- or semi-parametric regression is a valuable tool for detection and diagnosis of ef-
fects with a non parametric model part. The application to the estimation of systematic net 
distortions resulted in a useful diagnosis, which gave crucial hints as to how to perform the 
layout of the LV03 ↔ LV95 transformation triangles in the canton of Basel-Stadt, Switzer-
land. Other countries deal with similar problems, compare e.g. (Jansa and Augustin 2004). A 
further application is to model the locally different shifts of a sliding slope over e.g. fifty 
years: 
 
 new location = old location + shift + signal + noise. (13) 
 
The shift describes the mean motion of the slope, the signal the local variation, and the noise 
the measurement errors. However, when the use of adjusted values is required, methods like 
multiquadratic interpolation also "interpolating" the noise are to be used. 
 
In the wider context, performing such a signal fit is an ill posed problem with more than one 
solution. The choice of the regularization parameter α  and the regularizer R are arbitrary in 
the sense that one may choose the method of determining α  and the basis function b(t), the 
latter restricted by differentiability requirements and the demand that R be positive definite.  
These choices imply that it has to be emphasized that this method is rather reproductive and 
automatic than objective (Green and Silverman 1994 p.29). 
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