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SUMMARY  
 
The significance of estimated point and object movements in geodetic deformation analysis 
depends essentially on the quality of the observations and analysis techniques. A 
comprehensive modeling of the complete analysis process from the original observations to 
the parameters of interest requires an adequate consideration and propagation of all sources 
of uncertainty. In this study, the uncertainty budget of the observations is assumed to 
comprise two independent types of uncertainty: random variability and imprecision. The first 
one is well known; it is described by random variables. The second one is due to remaining 
systematic deviations between the observations and the geodetic model; it is modeled using 
fuzzy intervals. In order to take observation imprecision into account, both types of 
uncertainty are superposed to consistently extend the standard analysis techniques which are 
exclusively based on random variables: fuzzy intervals serve now as basic quantities; their 
midpoints are random variables representing the classical observations. 
 

This study shows for the first time a completely evaluated deformation analysis where both 
types of uncertainty (random variability and imprecision) are considered in a comprehensive 
way. We focus on the determination of relevant quantities and parameters and on statistical 
hypothesis testing in case of imprecision, in order to check the accordance of the collected 
data with the assumptions met in the model. Further on, a detailed application example 
illustrates the theoretical concept from a practical point of view, including the comparison to 
the pure stochastic case.  
 
SUMMARY (German) 
 
Die Aussagekraft von Punktkoordinaten und Objektbewegungen hängt im Wesentlichen von 
der Qualität der Beobachtungen und Auswertemethoden ab. Insbesondere die Fortpflanzung 
der Unsicherheiten von den originären Beobachtungen auf die zu schätzenden Parameter 
bedarf einer adäquaten Berücksichtigung des gesamten Unsicherheitshaushaltes. Aus diesem 
Grund werden in diesem Beitrag zwei unabhängige Arten von Unsicherheiten berücksichtigt. 
Zum einen die stochastische Variation der Messwerte und zum anderen verbleibende 
Restsystematiken zwischen den Modellannahmen und den realen Beobachtungen 
(Impräzision). Beide Arten von Unsicherheit werden zum ersten Mal in einem übergreifenden 
Ansatz auf eine geodätische Deformationsanalyse übertragen, wobei der Schwerpunkt der 
Untersuchungen auf der Parameterschätzung und den Hypothesentests liegt. Abschließend 
wird ein Beispiel für eine komplette Deformationsanalyse unter Berücksichtigung beider 
Unsicherheiten aufgezeigt und mit einer rein stochastischen Auswertung kritisch verglichen. 
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1. INTRODUCTION 
 
One very important aim of uncertainty modeling in engineering applications is to get reliable 
informations about the uncertainty budget of estimated parameters. Therefore, different types 
of uncertainty are considered, which are propagated from the original observations to the 
parameters of interest. In this study, the uncertainty budget of the observations is assumed to 
comprise two independent types of uncertainty: random variability and imprecision. The first 
one is well known; it is described by random variables. The second one is due to remaining 
systematic deviations between the observations and the geodetic model.  
 
Different types of uncertainty need different laws of uncertainty propagation. Whereas the 
stochastic part is treated with the law of propagation of covariances, imprecision is 
propagated with a sensitivity analysis (see Section 3). Both types of uncertainty can be 
modeled in a comprehensive way, using fuzzy intervals (see Section 2). This procedure is in 
full accordance with the international recommendations “Guide to the expression of 
uncertainty in measurements” (GUM), cf. (ISO 1995). Note that the treatment of systematic 
errors is different as proposed within the GUM.  
 
In this study, the methods to describe the extended uncertainty budget and the influence of 
remaining systematics (imprecision) during the measurement process are presented and 
discussed. It is shown that the consideration of imprecision is an additive term of uncertainty 
and leads to more reluctant rejections of the null hypothesis than in the pure stochastic case.  
 
The presented strategies for the evaluation of a complete deformation analysis can be 
transferred to many other engineering applications, considering that the parameters must be 
estimated within a least-squares adjustment, cf. e. g., (Kutterer 2006).  
 
2. UNCERTAINTY MODELING USING FUZZY INTERVALS 
 
Fuzzy theory (Zadeh 1965) and interval mathematics have proven to be an appropriate 
solution for the description of remaining systematics. Recently, many procedures have been 
introduced in different engineering applications, cf. e. g., (Kieffer et. al. 2000; Morales and 
Son 1998) and (Muhanna and Mullen 2001), incl. discussions about combined approaches in 
fuzzy theory, interval mathematics and probability theory, e. g., (Ferson et al. 2002).  
 
While modeling the uncertainty budget in a comprehensive way, both mentioned 
uncertainties of the here presented approach are characterized with a special case of fuzzy 
theory, the so called fuzzy randomness (Bandemer and Näther 1992; Möller and Beer 2004; 
Viertl 1996). We assume a precise stochastic component what is standard in geodetic data 
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analysis. This component is superposed by imprecision due to unknown remaining systematic 
errors. Note that imprecise quantities are exclusively modeled in terms of fuzzy intervals. 
 
A fuzzy interval A%  is uniquely defined by its membership function ( )Am x%  over the set �  of 
real numbers with a membership degree between 0 and 1: 

{ }: ( , ( ))= ∈%
% �AA x m x x       with    [ ]: 0,1→% �Am                   (1) 

The membership function of a fuzzy interval can be described by its left (L) and right (R) 
reference function (see also Fig. 1)  
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with mx  denoting the midpoint, r  its radius, and ,l rc c  the spread parameters of the 
monotonously decreasing reference functions (convex fuzzy intervals). Fuzzy intervals serve 
now as basic quantities; their midpoints mx  are considered in the following as random 
variables representing the classical observations and their spread which describes the range of 
imprecision. 

 
Figure 1: Fuzzy interval and its α -cut 

The α-cut of a fuzzy interval A%  is defined by: 
 { }: ( )AA x X m xα α= ∈ ≥%

% ,                                                                                     (3) 

with α [0,1]∈ . Each α-cut represents in case of monotonously decreasing reference functions 
a classical interval. The lower bound ,min

%Aα  and the upper bound ,max
%Aα  of an α-cut are 

obtained as:  
 ( ),min =% %A min Aα α ,                                                                                                 (4) 

 ( ),max =% %A max Aα α .                                                                                                (5) 
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Throughout the paper we assume symmetric fuzzy intervals. Hence, an equal representation 
of symmetric α-cuts can be found by the midpoint mA  and radius ,rAα

%  representation: 

 ,min ,= −% %
m rA A Aα α ,                                                                                                  (6) 

 ,max ,= +% %
m rA A Aα α .                                                                                                 (7) 

The integral over all α -cuts equals the membership function: 

 
1

0

( ) ( )A Am x m x d
α

α= ∫% %                                                                                              (8) 

Furthermore, basic operations on fuzzy intervals are the intersection and the complement; 
they are defined through the following membership functions: 
 ( )       :   ( ) min ( ), ( )   x  ∩= ∩ ⇔ = ∀ ∈% % %%

% % % �BA B AIntersection C A B m x m x m x       (9_a) 

          :         ( ) 1 ( )                x  = ⇔ = − ∀ ∈%%
% % �C

C
AA

Complement C A m x m x       (9_b) 

There are also arithmetic rules which can be directly applied to fuzzy intervals. For further 
information on fuzzy-theory and interval mathematics, cf. e. g., (Alefeld and Herzberger 
1983;  Bandemer and Näther 1992; Kaufmann and Gupta 1991). 
 
3. ANALYIS OF THE OBSERVATIONS AND ESTIMATED PARAMETERS 
 
In order to take observation imprecision into account, the influence parameters p  of the 
preprocessing steps of the raw observations, e. g. temperature, pressure, additive constants 
etc., are described by fuzzy intervals ( →p p% ), see (Schön 2003) for terrestrial measurements 
and (Schön and Kutterer 2003, 2005a, 2006) for GPS measurements. The membership 
functions are based on expert knowledge, on manufacturer’s introductions and on empirical 
studies. Figure 2 gives an overview for the sequence of work steps in an adjustment with 
respect to observation imprecision. The basic aspects of the formalism are summarized in the 
following subsections; they are based on a detailed description in interval mathematical 
notation (Schön 2003). 
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Figure 2: Least-squares adjustment with respect to observation imprecision 
 

3.1 Sensitivity Analysis of the Observations 
 
The effects of the imperfect knowledge of the influence parameters on the observations l  are 
computed with a sensitivity analysis. This procedure leads to fuzzy intervals for the 
observations ( →l l% ):    
 ( )=l p% %f ,                                                                                                            (10) 

with the midpoint of the fuzzy intervals representing the pure stochastic case: 
 ( )=l pm mf .                                                                                                        (11) 

The propagation of imprecision is based on the α-cuts p%α  of the imprecise influence 
parameters. Therefore, the function between the influence parameters p%  and the observations 
l% are linearized:  

 ( ),min ,( )= −l p F p% %m rfα α ,                                                                                (12_a)    

 ( ),max ,( )= +l p F p% %m rfα α ,                                                                               (12_b)    

with the matrix of partial derivatives ∂
=
∂

lF
p

 and �  denoting the element by element 

absolute value of the matrix. The imprecise vector of observation is then obtained as: 

 
1

0

( ) ( )= ∫l l% %m x m x d
α

α       and        ,min ,max,⎡ ⎤= ⎣ ⎦l l l%
% %m

α α α .                                        (13)                         

In case of linear reference functions for the imprecise influence parameters, the propagation 
of imprecision must only be applied for the α-cuts p%α  with 0α =  and 1α = . Otherwise, the 
imprecise vector of reduced observations is constructed based on a sufficient number of 
α-cuts from Equation (12) and (13).  
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3.2 Fuzzy evaluation of the parameter vector 
 
In order to transfer the uncertainty from the imprecise influence parameters p%  to the 
parameters of interest x , the least-squares adjustment has to be extended to the case of 
imprecision. Strictly speaking, the imprecise parameter vector must be computed by means of 
fuzzy theory (see Equation 15). In order to avoid overestimation, the evaluation of the 
parameter vector is based on the imprecise influence parameters p% . The midpoints of the 
estimated parameters x̂m  are obtained by the Gauß-Markov-Model, cf. (Koch 1999): 
 1

0 0 0ˆ ( ) ( ) ( )−= = + T Tx l , x x A PA A P l - am m mf ,                                                    (14) 

with the n u×  column regular design matrix A , the 1n×  vector of approximate values 0x  of 
the parameters x , the n n×  regular weight matrix P  and the 1n×  vector of approximate 
observations 0a . Then, the imprecise vector of estimated parameters x̂%  is constructed, based 
on a sufficient number of α-cuts: 
 ( )1

,min 0 0 ,ˆ ( )− ⎡ ⎤= + −⎣ ⎦
T Tx x A PA A P l - a F p% %m rα α ,                                            (15_a) 

 ( )1
,max 0 0 ,ˆ ( )− ⎡ ⎤= + +⎣ ⎦

T Tx x A PA A P l - a F p% %m rα α ,                                            (15_b) 

 
1

ˆ ˆ
0

( ) ( )= ∫x x% %m x m x d
α

α        and        ,min ,maxˆ
ˆ ˆ,⎡ ⎤= ⎣ ⎦x
x x%
% %m

α
α α .                                 (15_c) 

The presented approach is also transferable to a column-singular design matrix A , by using 
the pseudo inverse for the normal equations, cf. (Neumann et al. 2006) for the interval 
mathematical treatment. The parameter vector is exact component by component but 
overestimates the correct range of values which is a convex polyhedron (zonotope). See 
(Schön 2003) and (Schön and Kutterer 2005b) for a detailed description on zonotopes. 
 
4. HYPOTHESIS TESTING WITH RESPECT TO OBSERVATION IMPRECISION 
 
In this section, a short introduction to hypothesis testing with respect to observation 
imprecision is presented. We start with the pure stochastic case, where a quadratic form may 
be given by the following equation:  

2  ( , )-1
yyy Σ y �T fχ λ ,                                                                               (16) 

with the assumed normal distributed vector of reduced observations = 0y l - a  and its 
associated variance covariance matrix Σyy . Hence, the quadratic form follows a chi-square 

distribution with f rank( )= yyΣ  degrees of freedom and the non-centrality parameter λ . 
 
In the following, we pick up the above-mentioned idea to bring all problems back to the 
imprecise influence parameters in order to avoid overestimation. Therefore, the general form 
of a linear hypothesis has to be introduced as a function of the influence parameters p . First,  
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the alternative hypothesis AH  is given as: 
 :     =Bx wAH ,                                                                                                   (17) 

provided that Bx  must be a testable hypothesis, cf. (Koch 1999) for detailled introductions 
concerning the matrix B . The alternative hypothesis must be compared with the null 
hypothesis 
 0 :     E( ) =y AxH ,                                                                                               (18) 

where the expected value of the reduced observations E( )y  equals Ax . Examples for the 
Matrix B  in hypothesis testing are given in (Koch 1999) and (Welsch et al. 2000). This leads 
after a few calculation steps to a quadratic form: 

 ( ) 2
0ˆ ˆ( ) ( )  ( ,0)  under  H

++⎡ ⎤= − −⎢ ⎥⎣ ⎦
T T T TB x w B A PA B B x w �TT hχ ,               (19) 

that follows under the null hypothesis a central chi-square distribution ( 0λ = ) with 

( )rank
+⎡ ⎤= ⎢ ⎥⎣ ⎦

T TB A PA Bh  degrees of  freedom. This quadratic form from Equation (19) has 

to be converted to a quadratic form of imprecise influence parameters p% ; it is obtained as: 

 ,min min

⎛ ⎞⎡ ⎤− −⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥= − −⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠

T T T T T T

T T T

Δp F K DKF F K DK F K D Δp
y K DKF K DK K D y
w DKF DK D w

%

T

m mTα ,              (20_a) 

 ,max max

⎛ ⎞⎡ ⎤− −⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥= − −⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠

T T T T T T

T T T

Δp F K DKF F K DK F K D Δp
y K DKF K DK K D y
w DKF DK D w

%

T

m mTα ,             (20_b) 

 
1

0

( ) ( )T Tm x m x d
α

α= ∫% %        and        ,min ,max,Tm T T
α α α⎡ ⎤= ⎣ ⎦%

% % .                                  (20_c) 

with ,min m ,max m ,  ⎡ ⎤∈ = − −⎣ ⎦Δp Δp p p p p% % %α α α , ( )+= T TK B A PA A PT , ( )
++⎡ ⎤= ⎢ ⎥⎣ ⎦

T TD B A PA B  

and ym  the midpoint of the reduced observations. The fuzzy evaluation of the quadratic form 
from Equation (20) is based on Zadeh’s extension principle (Zadeh 1965), which can be 
equivalently replaced by the min-max operator of an optimization algorithm, cf.  (Dubois and 
Prade 1980, p. 37) for the theoretical concept and (Möller and Beer 2004) for applications in 
civil engineering. The optimization problem can be solved, e. g., with a standard Newton 
algorithm, cf. (Coleman and Li 1996). Figure 3 shows a constructed test value T%  and the 
comparison of the imprecise test value with the imprecise regions of acceptance A%  and 
rejection R% . 
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Figure 3: Comparison of the test value T%  with the regions of acceptance A%  and rejection R%  
 
(Neumann et al. 2006) demonstrate the evaluation of the above (see Equation 20) given 
imprecise quadratic function for outlier and global tests. A congruence test with respect to 
observation imprecision is computed in (Neumann and Kutterer 2006). Whereas the influence 
of imprecision on the test decision for a smaller number of observations is unimportant, it 
gets more important for a larger number of observations. This is in full accordance to the 
theoretical concept, because the goodness of fit for the stochastic uncertainty of the 
parameters increases with the number of observations. 
 
4.1 Test decision based on the card criterion 
 
The final test decision is based on the set-theoretical comparison of the imprecise test value 
(constructed using an α-cut optimization algorithm) with the region of acceptance A%  and the 
region of rejection R%  (see Fig. 3), cf. (Kutterer 2004) and (Neumann et al. 2006) for detailed 
explanations. The hypotheses are defined by  

 2 ( , ) ;�mT fχ λ   0

A

 0         H  the null hypothesis,

 0         H the alternative hypothesis, 

⎧ =⎪
⎨
≠⎪⎩

λ                       (21) 

with the non-centrality parameter λ . The midpoint of the test value follows under the null 
hypothesis a central chi-square distribution with f  degrees of freedom. The regions of 
acceptance A%  and rejection CR A= %%  are defined as fuzzy intervals. The degree of the 
rejectability ( )R Tρ %  of the null hypothesis 0H  under the condition of T%  is computed based on 
the degree of agreement of the test value with the region of rejection ( )R Tγ %

%  and the degree of 

disagreement of the test value with the region of acceptance ( )A Tδ %
% . We use the card criterion, 

because it allows a more suitable description of the degree of agreement between two fuzzy 
intervals. This leads to the equations given below (see Fig. 3): 

 
( )
( )

( )R

card T R
T

card T
γ

∩
=%

% %
%

%
     and     

( )
( )

( ) 1A

card T A
T

card T
δ

∩
= −%

%%
%

%
                            (22_a)                        

 ( )( ) min ( ), ( )=% % %
% % %

R R AT T Tρ γ δ                                                                            (22_b) 
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For the final test decision, the degree of rejectability ( )%
%

R Tρ  of the null hypothesis has to be 
compared with a suitable critical value [0,1]critρ ∈ : 
 0( ) reject H> ⇒%

%
critR Tρ ρ                                                                                    (23) 

The test is only rejected, if the test value agrees with the region of rejection and disagrees 
with the region of acceptance. This is in full accordance with the theoretical expectations, 
where observation imprecision is an additive term of uncertainty during the measurement 
process. The choice of critρ  depends on the particular application and must be based on 
expert knowledge. For outlier detection we propose to choose 0.5>critρ  and for safety-
relevant measures 0critρ → . 
 
5. EXAMPLE: DEFORMATION ANALYIS FOR THE MONITORING OF A LOCK 
 
This section shows a completely evaluated deformation analysis with respect to observation 
imprecision. We focus in the given example on the 2-dimensional geodetic network of the 
lock “Uelzen I”. The network is composed of eight control points around the lock and four 
points (101-104) on top of the lock (see Figure 4). For further informations about the 
monitoring network, cf. (Neumann et al. 2006) and (Neumann and Kutterer 2006). 

            
Figure 4: The lock “Uelzen I” and the geodetic monitoring network 

 
Table 1 and 2 show some typical orders of magnitude for the standard deviations σ  and 
interval radii ,l% rα  (α -level of zero) of the observations and interval radii ,x̂% rα  (α -level of 
zero) of the parameters, obtained by the described methods from Sections 3.1 and 3.2.  

 

 Distances Zenith angles Horizontal angles 
,  ( =0)l% rα α  

 

0,5 mm 
 

0,5 mgon 
 

0,1 mgon 
σ  3 mm + 2 ppm 1.5 mgon 0.5 mgon 

Table 1: Typical interval radii and standard deviations of the observations 
 

 x-component y-component 

,ˆ ( =0)x% rα α  
 

0.2…1.0 mm 
 

0.2…1.0 mm 
σ  0.4…1.5 mm 0.4…1.5 mm 

Table 2: Typical interval radii and standard deviations of the parameters 
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The imprecise evaluation of the parameters and the hypothesis tests is based on eleven 
different α-cut levels. The membership function of the imprecise regions of acceptance A%  is 
equal to one until it reaches the fractile value 2

0,95 ( ,0)fχ  and then decreases linearly to zero 

which is reached with the fractile value 2
0,99 ( ,0)fχ . The influence parameters p%  of the 

sensitivity analysis are defined as triangular fuzzy intervals (linear reference functions).  
 
The first step is the computation of the global tests for the here considered epochs 1999 and 
2004. Whereas the epoch 2004 does not show any noticeable problems and the degree of 
rejectability for the null hypothesis (see Equation (18)) is zero, the null hypothesis for the 
epoch 1999 is rejected; see Figure 5 for the given test scenario and (Neumann et al. 2006) for 
another numerical example. The impact of remaining systematics in both global tests is small. 
In order to find the reason for the rejection of the null hypothesis of the global test we use one 
and multidimensional hypothesis testing for outlier detection, see (Neumann et al. 2006) and 
(Neumann and Kutterer 2006) for the test procedure. While revealing two outliers, the global 
test is no more rejected and the deformation analysis may start with a congruence test for the 
control points of the network. Note, that further reasons for the rejection of the null 
hypothesis of the global test can be non-suitable choices of the functional or stochastic 
model-components. 

 
 

Figure 5: Global test for the epoch 1999 
 

We carry on with the deformation analysis checking the stability of seven control points 
around the lock with the above-mentioned congruence test; see Fig. 6 for the imprecise test 
situation and cf. (Neumann and Kutterer 2006) for the evaluation of the imprecise quadratic 
form. Throughout this section two different cases for the congruence tests are considered: the 
first one is an imprecise evaluation without additional noise, it is shown on the left hand side 
of the below given Figures. The second one refers to the right hand side of the Figures 6-8, 
where the points of both epochs are afflicted with an additional Gaussian point noise of 
0.25 mm in each epoch. This may be due to discretization problems of the lock and due to the 
object fuzziness, e. g. thermal expansion and non-controllable short-time deformation of the 
monitoring object. The hypotheses considered for the congruence tests are: 
 0 ,1999 ,2004ˆ ˆ:     E( ) E( )=x xm c m cH ,                                                                       (24_a) 

 ,1999 ,2004ˆ ˆ:     E( ) E( )≠x xA m c m cH ,                                                                      (24_b) 
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with the expected values for the control points in the epochs 1999 ,1999ˆ( )xm cE  and 2004  

,2004ˆ( )xm cE . Both test values are clearly inside the region of rejection and the null hypotheses 
are rejected. At least one point coordinate has changed significantly between the epochs 1999 
and 2004.   
 

  
Figure 6: Congruence test with and without additional stochastic point noise 

For this reason, we iterate over the number of control points to find the point, which mostly 
influences the quadratic test value. This procedure is based on the degree of rejectability of 
the null hypothesis in the imprecise case. Before applying the remaining control point to a 
new quadratic form, they are adjusted within a partially constrained trace minimization with 
respect to the remaining control points in both epochs, cf. (Welsch et al. 2000) for a detailed 
description. Figure 7 shows the two test situations with the lowest degree of rejectability for 
the null hypothesis after eliminating one control point. Whereas the congruence test without 
additional noise is rejected for 0.03critρ < , the case with additional stochastic noise is already 
rejected for 0.52critρ < . The mean points of the test values refer to the pure stochastic case. 
Due to the asymmetric test value on the right hand side of Figure 7, the degree of rejectability 
of the null hypothesis is higher than 0.5, although the midpoint of the test value is clearly 
inside the imprecise region of acceptance. 
 

  
Figure 7: Congruence tests after the elimination of point 904 
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The final congruent point set in both epochs is obtained after eliminating the points 904 and 
909 from the control points. The associated test situations are given in Figure 8. The 
deformation may continue with pointwise tests with the quadratic form given in Section 4 
(see Equation 20) to detect movements of the object point, but this is not discussed in this 
paper. 
 

 
Figure 8: Congruence test after eliminating the points 904 and 909 from the control points 

 
6. CONCLUSIONS 
 
In this study a completely evaluated deformation analysis was presented, considering the 
uncertainty budget to contain two independent types of uncertainty: random variability and 
imprecision. The first one describes the stochastic behavior of the observations and 
parameters; the second one is due to remaining systematic deviations between the 
observations and the geodetic model. Both types of uncertainty are modeled in a 
comprehensive way to be more adequate in data analysis in order to avoid the quadratic 
propagation of remaining systematics, what leads to an underestimation of the uncertainty 
budget for the parameters of interest. 
 
It is shown, that the imprecise evaluation leads to an extended uncertainty budget, noticeable 
by the range of the so-called fuzzy intervals. In addition, it allows computing the effects of 
neglected corrections or reductions on the parameters of interest. Whereas in some 
monitoring networks the effects of remaining systematics are unimportant, in other networks 
they may dominate the uncertainty budget. The extended uncertainty budget contains also 
some parts of the so called point noise in epoch comparison, e. g., discretization problems of 
the monitoring object. Furthermore, the modeled regions of transition between the regions of 
acceptance and rejection allow a more comprehensive test decision in hypothesis testing than 
in the pure stochastic case.   
 
The presented evaluation strategy allows optimizing the network configuration with respect 
to random and systematic uncertainties (Schön and Kutterer 2001) and (Schön 2003). 
Nevertheless two further extensions have to be mentioned: the imprecise evaluation has to be 
extended in order to take the above-mentioned object fuzziness into account. The second 
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extension is the development of a sensitivity analysis in the imprecise case, based on the 
type I and type II errors in the imprecise case, cf. (Kutterer 2004).  
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